X^2+X^2+20x+100x=2500

Simple and best practice solution for X^2+X^2+20x+100x=2500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+X^2+20x+100x=2500 equation:



X^2+X^2+20X+100X=2500
We move all terms to the left:
X^2+X^2+20X+100X-(2500)=0
We add all the numbers together, and all the variables
2X^2+120X-2500=0
a = 2; b = 120; c = -2500;
Δ = b2-4ac
Δ = 1202-4·2·(-2500)
Δ = 34400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{34400}=\sqrt{400*86}=\sqrt{400}*\sqrt{86}=20\sqrt{86}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-20\sqrt{86}}{2*2}=\frac{-120-20\sqrt{86}}{4} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+20\sqrt{86}}{2*2}=\frac{-120+20\sqrt{86}}{4} $

See similar equations:

| 85+4x=92 | | 480=8t+16t^2 | | 1/2x+3/5x-4=201/3x | | 10^3y=5 | | .75(12x+12)=9x+5 | | -25b-74=b-126 | | 4(92)+x=85 | | a+4/2=a-2/4 | | 10+5x2= | | 263=-x+23 | | a-91=4a-28 | | 5+z+z=13 | | 6^x=1296 | | (4/5y)-(8)=(2/5y)+(16) | | 6=b18 | | d=21/2×58 | | x-908=-29x-8 | | 2x-0=78 | | (16x+4)+110+(3x+11)=180 | | 265=169-x | | 1/2×3/5×-4=201/3x | | (6n)-(220)=(2n) | | (x-5)/(2x-6)+(x-7)/(12-4x)=x | | 8x+47=8(x+5)= | | 16x+4+3x+11=70 | | -5y+40=y+286 | | 2x^2+9=21 | | 3y+(-3y)=9 | | 15n+2=33 | | 1/3(x+6)=6 | | 12n+8=n-410 | | 15=u7 |

Equations solver categories